Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.413
Filtrar
1.
Vaccine ; 42(12): 3134-3143, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38582691

RESUMO

OBJECTIVE: This study investigated the immunogenicity and safety of a pentavalent vaccine Gobik (DPT-IPV-Haemophilus influenzae type b [Hib]) in healthy Japanese infants aged ≥ 2 and < 43 months using a concomitant vaccination with ActHIB® (Hib) and Tetrabik (DPT-IPV) as a comparator. METHODS: This study was conducted as a phase 3, multicenter, active controlled, assessor-blinded, randomized, parallel-group study. Participants received a total of 4 subcutaneous doses (3 primary immunization doses and a booster dose) of either the experimental drug (DPT-IPV-Hib) or the active comparator (Hib + DPT-IPV). The primary endpoints were the anti-PRP antibody prevalence rate with ≥ 1 µg/mL, and the antibody prevalence rates against pertussis, diphtheria toxin, tetanus toxin, and attenuated poliovirus after the primary immunization. RESULTS: In 267 randomized participants (133 in the DPT-IPV-Hib group and 134 in the Hib + DPT-IPV group), the antibody prevalence rates after the primary immunization in both groups were 100.0 % and 88.7 % for anti-PRP antibody with ≥ 1 µg/mL, 99.2 % and 98.5 % against diphtheria toxin, and 100.0 % and 99.2 % against tetanus toxin, respectively. The antibody prevalence rates against pertussis and attenuated poliovirus were 100.0 % in both groups. The non-inferiority of the DPT-IPV-Hib group to the Hib + DPT-IPV group was verified for all measured antibodies. In both groups, all the GMTs of antibodies after the primary immunization were higher than those before the first dose, and those after the booster dose were higher than those after the primary immunization. No safety issues were identified. CONCLUSION: A single-agent Gobik, the first DPT-IPV-Hib pentavalent vaccine approved in Japan, was confirmed to simultaneously provide primary and booster immunizations against Hib infection, pertussis, diphtheria, tetanus, and poliomyelitis and to have a preventive effect and safety comparable to concomitant vaccination with Hib (ActHIB®) and DPT-IPV quadrivalent vaccine (Tetrabik).


Assuntos
Difteria , Vacinas Anti-Haemophilus , Haemophilus influenzae tipo b , Poliomielite , Tétano , Coqueluche , Lactente , Humanos , Japão , Tétano/prevenção & controle , Difteria/prevenção & controle , Coqueluche/prevenção & controle , Toxina Tetânica , Toxina Diftérica , Vacina Antipólio de Vírus Inativado , Esquemas de Imunização , Anticorpos Antibacterianos , Vacina contra Difteria, Tétano e Coqueluche , Vacinas Combinadas , Poliomielite/prevenção & controle , Vacinas Conjugadas
2.
Int J Biol Macromol ; 260(Pt 2): 129562, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246445

RESUMO

Dengue virus infection has significantly increased, with reported cases soaring from 505,430 in 2000 to 2,809,818 in 2022, emphasizing the need for effective treatments. Among the eleven structural and non-structural proteins of DENV, Non-structural protein 1 (NS1) has emerged as a promising target due to its diverse role in modulating the immune response, inducing vascular leakage, and facilitating viral replication and assembly. Monoclonal antibodies are the sole therapeutics to target NS1, but concerns about their cross-reactivity persist. Given these concerns, our study focuses on designing a novel Peptide Ligand Conjugate (PLC) as a potential alternative immunotherapeutic agent against NS1. This PLC aims to mediate the immune elimination of soluble NS1 and NS1-presenting DENV-infected host cells by pre-existing vaccine-induced immunity. By employing the High Throughput Virtual Screening (HTVS) method, QikProp analysis, and Molecular Dynamics studies, we identified three hits from Asinex Biodesigned Ligands out of 220,177 compounds that show strong binding affinity towards the monoclonal binding site of NS1 protein. After a rigorous analysis of physicochemical characteristics, antigenicity, allergenicity, and toxicity using various servers, we selected two peptides: the minimum epitopic region of the Diphtheria and Tetanus toxins as the peptide components of the PLCs. A non-cleavable, non-reactive oxime linker connected the ligand with the peptide through oxime and amide bonds. DPT vaccine is widely used in dengue-endemic countries, and it has been reported that antibodies titer against MER of Diphtheria toxin and Tetanus toxins persist lifelong in DPT-vaccinated people. Therefore, once the rationally designed PLCs bind to NS1 through the ligands, the peptide will induce an immune response against NS1 by triggering pre-existing DPT antibodies and activating memory cells. This orchestrated immune response will destroy soluble NS1 and NS1-expressing DENV-infected cells, thereby reducing the illness of severe dengue hemorrhagic fever and the DENV infection, respectively. Given the increasing demand for new therapeutics for DENV treatment, further investigation into this novel immune-therapeutic strategy may offer a new avenue for treating mild and severe dengue infections.


Assuntos
Vírus da Dengue , Dengue , Dengue Grave , Humanos , Dengue/terapia , Dengue/diagnóstico , Ligantes , Toxina Tetânica , Peptídeos , Imunoterapia , Oximas , Proteínas não Estruturais Virais , Anticorpos Antivirais
3.
Eur J Pharmacol ; 962: 176242, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38048980

RESUMO

Overt muscle activity and impaired spinal locomotor control hampering coordinated movement is a hallmark of spasticity and movement disorders like dystonia. While botulinum toxin A (BoNT-A) standard therapy alleviates mentioned symptoms presumably due to its peripheral neuromuscular actions alone, the aim of present study was to examine for the first time the toxin's trans-synaptic activity within central circuits that govern the skilled movement. The rat hindlimb motor pools were targeted by BoNT-A intrasciatic bilateral injection (2 U per nerve), while its trans-synaptic action on premotor inputs was blocked by intrathecal BoNT-A-neutralising antitoxin (5 i.u.). Effects of BoNT-A on coordinated and high intensity motor tasks (rotarod, beamwalk swimming), and localised muscle weakness (digit abduction, gait ability) were followed until their substantial recovery by day 56 post BoNT-A. Later, (day 62-77) the BoNT-A effects were examined in unilateral calf muscle spasm evoked by tetanus toxin (TeNT, 1.5 ng). In comparison to peripheral effect alone, combined peripheral and central trans-synaptic BoNT-A action induced a more prominent and longer impairment of different motor tasks, as well as the localised muscle weakness. After near-complete recovery of motor functions, the BoNT-A maintained the ability to reduce the experimental calf spasm evoked by tetanus toxin (TeNT 1.5 ng, day 62) without altering the monosynaptic reflex excitability. These results indicate that, in addition to muscle terminals, BoNT-A-mediated control of hyperactive muscle activity in movement disorders and spasticity may involve the spinal premotor inputs and central circuits participating in the skilled locomotor performance.


Assuntos
Toxinas Botulínicas Tipo A , Transtornos dos Movimentos , Fármacos Neuromusculares , Ratos , Animais , Toxinas Botulínicas Tipo A/farmacologia , Toxina Tetânica , Movimento , Debilidade Muscular , Fármacos Neuromusculares/farmacologia
4.
mSphere ; 8(6): e0036923, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38009947

RESUMO

IMPORTANCE: C. tetani is a spore-forming, anaerobic bacterium that produces a toxin causing muscle stiffness and paralysis. Tetanus is preventable with the toxoid vaccine, but it remains a significant public health threat in regions with low vaccine coverage. However, there are relatively few isolates and limited genomic information available worldwide. In Japan, about 100 cases are reported each year, but there have been no nationwide surveys of isolates, and no genomic information from Japanese isolates has been published. In our study, we analyzed the genomes of 151 strains from a limited survey of soil in Kumamoto, Japan. Our findings revealed a high degree of genetic diversity, and we also identified a subset of strains that produced significantly more toxin, which provides new insights into the pathogenesis of tetanus. Our findings lay the foundation for future studies to investigate the distribution and evolution of C. tetani in Japan and neighboring countries.


Assuntos
Tétano , Vacinas , Humanos , Toxina Tetânica/genética , Clostridium tetani/genética , Tétano/microbiologia , Japão , Composição de Bases , Análise de Sequência de DNA , Filogenia , RNA Ribossômico 16S
5.
Am J Trop Med Hyg ; 109(5): 1122-1128, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783453

RESUMO

There is a need for next-generation cholera vaccines that provide high-level and durable protection in young children in cholera-endemic areas. A cholera conjugate vaccine (CCV) is in development to address this need. This vaccine contains the O-specific polysaccharide (OSP) of Vibrio cholerae O1 conjugated via squaric acid chemistry to a recombinant fragment of the tetanus toxin heavy chain (OSP:rTTHc). This vaccine has been shown previously to be immunogenic and protective in mice and found to be safe in a recent preclinical toxicological analysis in rabbits. We took advantage of excess serum samples collected as part of the toxicological study and assessed the immunogenicity of CCV OSP:rTTHc in rabbits. We found that vaccination with CCV induced OSP-, lipopolysaccharide (LPS)-, and rTTHc-specific immune responses in rabbits, that immune responses were functional as assessed by vibriocidal activity, and that immune responses were protective against death in an established virulent challenge assay. CCV OSP:rTTHc immunogenicity in two animal model systems (mice and rabbits) is encouraging and supports further development of this vaccine for evaluation in humans.


Assuntos
Vacinas contra Cólera , Cólera , Vibrio cholerae O1 , Criança , Coelhos , Humanos , Animais , Camundongos , Pré-Escolar , Cólera/prevenção & controle , Antígenos O , Toxina Tetânica , Vacinas Conjugadas , Imunoglobulina M , Vacinação , Formação de Anticorpos , Modelos Animais de Doenças , Anticorpos Antibacterianos , Toxina da Cólera
6.
Appl Microbiol Biotechnol ; 107(23): 7197-7211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37741939

RESUMO

Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.


Assuntos
Toxinas Botulínicas Tipo A , Toxina Tetânica , Animais , Toxina Tetânica/genética , Toxina Tetânica/metabolismo , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Ligação Proteica , Anticorpos Neutralizantes , Vacinas de Subunidades/genética
7.
Biologicals ; 82: 101681, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37130447

RESUMO

For a long time, a widely used method for tetanus toxoid (Ttd) potency has been the challenge test, in which animals are immunized and then challenged with tetanus toxin in lethal or non-lethal way. In the context of animal welfare, an alternative is desired because the method causes unsustainable distress to animals. We aimed to replace the system for describing test results, in which scores are assigned to symptoms exhibited by challenged animals, with scores assigned to antibody ELISA titers in immunized mouse sera. The potency values and confidence intervals calculated by the absorbance score system were equivalent to those calculated by the symptom score system. We also attempted to utilize the raw ELISA absorbance instead of the assigned absorbance score and obtained similar results. ELISA may serve as an alternative to the lethal challenge for Ttd potency tests, not only in Japan but also in other countries in which mouse challenge tests are employed.


Assuntos
Toxina Tetânica , Toxoide Tetânico , Camundongos , Animais , Testes de Neutralização/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Bem-Estar do Animal
8.
J Immunol Methods ; 513: 113427, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36652969

RESUMO

After Clostridium tetani infects the human body, it propagates under anaerobic conditions and produces tetanus neurotoxin (TeNT). TeNT can affect the central nervous system, inhibit the release of neurotransmitters, and result in respiratory failure, which are the root causes of death in tetanus patients. Identifying monoclonal antibodies (mAbs) targeting TeNT with neutralizing activity is urgently needed for the prevention and treatment of tetanus infection. In this study, through immunizing BALB/c mice with tetanus toxoid (TT), we obtained six positive hybridoma cell lines (1A7, 2C7, 3A7, 3H4, 4C1, and 4E12). Antibody isotyping showed that the antibodies are all of the IgG1/κ subclass. Ascites fluid was prepared by allogeneic ascites induction and the antibodies were purified through protein G affinity chromatography columns. Purities of the produced murine mAbs were all greater than 95%. All six antibodies bound to linear epitopes, among which 3A7 bound to the TeNT/L domain and the other five antibodies bound to the TeNT/Hc domain. Moreover, the affinity constants of these six antibodies against the antigen were all in the nanomolar range, and the affinity of 4E12 antibody reached the picomolar range. Results from toxin-neutralization assays in mice showed that 2C7 antibody delayed animal death, while 1A7, 3A7, 3H4, and 4E12 antibodies conferred partial protection. Additionally, 4C1 antibody offered complete protection, as 200 µg of 4C1 antibody fully protected against toxin challenge with 10 LD50 of TeNT and had a window period of 1 h. Antibody epitope grouping results revealed that the binding epitopes of 4C1 antibody were different from those of the other five antibodies. When 4C1 antibody was used in combination with another antibody, the neutralizing activities of antibodies were all evidently enhanced. Specifically, 4C1 combined with 3A7 antibody led to the greatest improvement in neutralizing activities, and 20 µg antibodies total (10 + 10 µg) fully protected against toxin challenge with 10 LD50. When 4E12, 3A7, and 4C1 antibodies were used in combination, 18 µg antibodies total (6 + 6 + 6 µg) completely neutralized 10 LD50 toxin. The present study derived murine mAbs with neutralizing activities and laid the foundation for follow-up therapeutic drug development for TeNT poisoning as well as establishment of TeNT detection methods.


Assuntos
Toxina Tetânica , Tétano , Humanos , Camundongos , Animais , Toxina Tetânica/metabolismo , Tétano/prevenção & controle , Anticorpos Neutralizantes , Ascite , Anticorpos Monoclonais , Epitopos , Camundongos Endogâmicos BALB C
9.
J Immunoassay Immunochem ; 44(3): 283-295, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-36300827

RESUMO

Tetanus is an acute and often fatal infectious disease caused by Clostridium tetani. Tetanus toxin (TT) is responsible for spastic paralysis observed in tetanus. Anti-tetanus antibodies obtained from horses and humans are the most antitoxins used for tetanus treatment, although some clinical side effects and disadvantages have been reported in their application. The aim of this study is the production of anti-TT IgY and evaluation of its protective effects in a mouse model. Anti-TT IgY was purified from the egg yolk using PEG6000 precipitation and water dilution methods, and its purity was verified by SDS-PAGE. Finally, the potency of purified anti-TT IgY in neutralizing the lethal effects of TT was studied in vivo using a mouse model. PEG6000 precipitation method had better results. Animal studies showed that the purified IgY neutralized the toxic effects of 100 MLD of TT and multiple intravenous-dose injections of anti-TT IgY also had a continuous effect of TT neutralization. The purified anti-TT IgY was effective in neutralizing the lethal activity of TT in a mouse model. Our results suggested that IgY could be an alternative therapeutic source for the management of tetanus in the future.Abbreviations Anti-TT, Anti-tetanus toxin; ELISA, Enzyme-linked immunosorbent assay; IgY, Immunoglobulin Y; MLD, Minimum lethal dose; PBS, Phosphate buffer solution; PEG, Polyethylene glycol; SDS-PAGE, Sodium dodecyl sulfate polyacrylamide gel electrophoresis; TIG, Tetanus immune globulin; TT, Tetanus toxin; WD, Water dilution; RT, Room temperature.


Assuntos
Imunoglobulinas , Toxina Tetânica , Humanos , Animais , Cavalos , Toxina Tetânica/farmacologia , Modelos Animais de Doenças , Eletroforese em Gel de Poliacrilamida
10.
FEBS Lett ; 597(4): 515-523, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36403098

RESUMO

Paraclostridial mosquitocidal protein 1 (PMP1) is a member of the clostridial neurotoxin (CNT) family, which includes botulinum and tetanus neurotoxins. PMP1 has unique selectivity for anopheline mosquitos and is the only known member of the family that targets insects. PMP1 is encoded in an orfX gene cluster, which in addition to the toxin, consists of OrfX1, OrfX2, OrfX3, P47 and NTNH, which have been shown to aid in PMP1 toxicity. We here show that OrfX1 and OrfX3 form a complex and present its structure at 2.7 Å. The OrfX1-OrfX3 complex mimics the structure of full-length OrfX2 and belongs to the lipid-binding TULIP protein superfamily. With this report, the structures of all proteins encoded in the orfX gene cluster of CNTs are now determined.


Assuntos
Clostridium botulinum , Toxinas Biológicas , Animais , Neurotoxinas/genética , Neurotoxinas/metabolismo , Clostridium botulinum/química , Clostridium botulinum/genética , Clostridium botulinum/metabolismo , Família Multigênica , Toxinas Biológicas/metabolismo , Toxina Tetânica/genética , Toxina Tetânica/metabolismo
11.
Toxins (Basel) ; 14(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36356009

RESUMO

We review some of the precursor works of the Pasteurians in the field of bacterial toxins. The word "toxin" was coined in 1888 by Ludwig Brieger to qualify different types of poison released by bacteria. Pasteur had identified the bacteria as the cause of putrefaction but never used the word toxin. In 1888, Émile Roux and Alexandre Yersin were the first to demonstrate that the bacteria causing diphtheria was releasing a deadly toxin. In 1923, Gaston Ramon treated that toxin with formalin and heat, resulting in the concept of "anatoxin" as a mean of vaccination. A similar approach was performed to obtain the tetanus anatoxin by Pierre Descombey, Christian Zoeller and G. Ramon. On his side, Elie Metchnikoff also studied the tetanus toxin and investigated the cholera toxin. His colleague from Odessa, Nikolaï GamaleÏa who was expected to join Institut Pasteur, wrote the first book on bacterial poisons while other Pasteurians such as Etienne Burnet, Maurice Nicolle, Emile Césari, and Constant Jouan wrote books on toxins. Concerning the endotoxins, Alexandre Besredka obtained the first immune antiserum against lipopolysaccharide, and André Boivin characterized the biochemical nature of the endotoxins in a work initiated with Lydia Mesrobeanu in Bucharest.


Assuntos
Venenos , Tétano , Humanos , Endotoxinas , Toxina Tetânica , Bactérias
12.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232926

RESUMO

Recent animal experiments suggested that centrally transported botulinum toxin type A (BoNT-A) might reduce an abnormal muscle tone, though with an unknown contribution to the dominant peripheral muscular effect observed clinically. Herein, we examined if late BoNT-A antispastic actions persist due to possible central toxin actions in rats. The early effect of intramuscular (i.m.) BoNT-A (5, 2 and 1 U/kg) on a reversible tetanus toxin (TeNT)-induced calf muscle spasm was examined 7 d post-TeNT and later during recovery from flaccid paralysis (TeNT reinjected on day 49 post-BoNT-A). Lumbar intrathecal (i.t.) BoNT-A-neutralizing antiserum was used to discriminate the transcytosis-dependent central toxin action of 5 U/kg BoNT-A. BoNT-A-truncated synaptosomal-associated protein 25 immunoreactivity was examined in the muscles and spinal cord at day 71 post-BoNT-A. All doses (5, 2 and 1 U/kg) induced similar antispastic actions in the early period (days 1-14) post-BoNT-A. After repeated TeNT, only the higher two doses prevented the muscle spasm and associated locomotor deficit. Central trans-synaptic activity contributed to the late antispastic effect of 5 U/kg BoNT-A. Ongoing BoNT-A enzymatic activity was present in both injected muscle and the spinal cord. These observations suggest that the treatment duration in sustained or intermittent muscular hyperactivity might be maintained by higher doses and combined peripheral and central BoNT-A action.


Assuntos
Toxinas Botulínicas Tipo A , Animais , Toxinas Botulínicas Tipo A/farmacologia , Hipertonia Muscular/tratamento farmacológico , Ratos , Espasmo/tratamento farmacológico , Proteína 25 Associada a Sinaptossoma/metabolismo , Toxina Tetânica/metabolismo , Toxina Tetânica/farmacologia
13.
Sheng Wu Gong Cheng Xue Bao ; 38(9): 3353-3362, 2022 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-36151805

RESUMO

A fusion protein containing a tetanus toxin peptide, a tuftsin peptide and a SARS-CoV-2S protein receptor-binding domain (RBD) was prepared to investigate the effect of intramolecular adjuvant on humoral and cellular immunity of RBD protein. The tetanus toxin peptide, tuftsin peptide and S protein RBD region were connected by a flexible polypeptide, and a recombinant vector was constructed after codon optimization. The recombinant S-TT-tuftsin protein was prepared by prokaryotic expression and purification. BALB/c mice were immunized after mixed with aluminum adjuvant, and the humoral and cellular immune effects were evaluated. The recombinant S-TT-tuftsin protein was expressed as an inclusion body, and was purified by ion exchange chromatography and renaturated by gradient dialysis. The renaturated protein was identified by Dot blotting and reacted with serum of descendants immunized with SARS-CoV-2 subunit vaccine. The results showed that the antibody level reached a plateau after 35 days of immunization, and the serum antibody ELISA titer of mice immunized with recombinant protein containing intramolecular adjuvant was up to 1:66 240, which was significantly higher than that of mice immunized with S-RBD protein (P < 0.05). At the same time, the recombinant protein containing intramolecular adjuvant stimulated mice to produce a stronger lymphocyte proliferation ability. The stimulation index was 4.71±0.15, which was significantly different from that of the S-RBD protein (1.83±0.09) (P < 0.000 1). Intramolecular adjuvant tetanus toxin peptide and tuftsin peptide significantly enhanced the humoral and cellular immune effect of the SARS-CoV-2 S protein RBD domain, which provideda theoretical basis for the development of subunit vaccines for SARS-CoV-2 and other viruses.


Assuntos
COVID-19 , Tuftsina , Vacinas Virais , Adjuvantes Imunológicos , Alumínio , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Toxina Tetânica , Vacinas de Subunidades
14.
Adv Med Sci ; 67(2): 338-345, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36084365

RESUMO

PURPOSE: Melanoma is a malignant and metastatic form of skin cancer, which is not diagnosed in early stages of the disease. Nowadays, immunotherapy is changing the treatment landscape for metastatic melanoma. Placenta-specific1 (PLAC1) is a cancer-testis-placenta (CTP) antigen with differential expression in melanoma tissues. Here, we evaluated the potential of plac1 to induce anti-cancer immune responses as well as to prevent cancer development in a mouse model of melanoma. METHODS: Two proteins containing full extracellular domain (ED) of mouse plac1+KDEL3 and full ED of mouse plac1+ tetanus toxin P2 and P30+ pan DR epitope (PADRE) â€‹+ â€‹KDEL3 were produced and injected in mice to evaluate their capacity to induce anti-cancer immune responses as well as their potential to prevent melanoma development. Induction of plac1-specific humoral and cellular responses as well as tumor-associated parameters were tested in a series of 36 mice. RESULTS: Sera of mice immunized with ED â€‹+ â€‹P2P30+PADRE â€‹+ â€‹KDEL3 contained antibodies able to react with surface plac1 in B16F10 â€‹cells. Both proteins induced proliferative cellular immune responses against B16F10 â€‹cells and plac1-specific cytotoxic T cells (CTL) and CD107a â€‹+ â€‹CTL responses, which was higher in mice immunized with ED â€‹+ â€‹P2P30+PADRE â€‹+ â€‹KDEL3. Splenocytes of mice vaccinated with ED â€‹+ â€‹P2P30+PADRE â€‹+ â€‹KDEL3 exerted a significant cytotoxicity against B16F10 â€‹cells. Vaccination with ED â€‹+ â€‹P2P30+PADRE â€‹+ â€‹KDEL3 significantly delayed B16F10-induced tumor onset, reduced tumor growth, and increased survival. Tumors induced by B16F10 expressed plac1 in vivo. CONCLUSION: Our results pave the way for development of effective melanoma preventive vaccine in humans, although further studies are needed.


Assuntos
Vacinas Anticâncer , Melanoma , Proteínas da Gravidez , Animais , Humanos , Masculino , Camundongos , Modelos Animais de Doenças , Epitopos , Imunização , Melanoma/terapia , Toxina Tetânica , Vacinação
15.
J Immunother Cancer ; 10(9)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36100311

RESUMO

INTRODUCTION: Intratumoral injections of novel therapeutics can activate tumor antigen-specific T cells for locoregional tumor control and may even induce durable systemic protection (against distant metastases) via recirculating T cells. Here we explored the possibility of a universal immunotherapy that promotes T-cell responses in situ and beyond, upon intratumoral injection of nanoparticles formulated with micron-sized crystals. METHODS: Cucumber mosaic virus-like particles containing a tetanus toxin peptide (CuMVTT) were formulated with microcrystalline tyrosine (MCT) adjuvant and injected directly in B16F10 melanoma tumors. To further enhance immunogenicity, we loaded the nanoparticles with a TLR7/8 ligand and incorporated a universal tetanus toxin T-helper cell peptide. We assessed therapeutic efficacy and induction of local and systemic immune responses, including RNA sequencing, providing broad insight into the tumor microenvironment and correlates of protection. RESULTS: MCT crystals were successfully decorated with CuMVTT nanoparticles. This 'immune-enhancer' formed immunogenic depots in injected tumors, enhanced polyfunctional CD8+ and CD4+ T cells, and inhibited B16F10 tumor growth locally and systemically. Local inflammation and immune responses were associated with upregulation of genes involved in complement activation and collagen formation. CONCLUSIONS: Our new immune-enhancer turned immunologically cold tumors into hot ones and inhibited local and distant tumor growth. This type of immunotherapy does not require the identification of (patient-individual) relevant tumor antigens. It is well tolerated, non-infectious, and affordable, and can readily be upscaled for future clinical testing and broad application in melanoma and likely other solid tumors.


Assuntos
Melanoma , Nanopartículas , Animais , Antígenos de Neoplasias , Humanos , Imunoterapia , Melanoma/tratamento farmacológico , Camundongos , Toxina Tetânica , Microambiente Tumoral
16.
Vet Clin North Am Equine Pract ; 38(2): 269-282, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35953145

RESUMO

Botulism and tetanus are the 2 primary manifestations of neurologic disease caused by clostridial toxins. Only a small dose of clostridial toxin is required to induce severe, and often fatal, disease. Consequently, definitive diagnosis of either disease is nearly impossible to achieve antemortem or postmortem; presumptive diagnosis is usually made based on physical and neurologic examination findings. Because the severity of clinical signs can worsen rapidly, prognosis worsens when therapeutic intervention is delayed. Highly effective vaccines are available against both botulism and tetanus and are critical in preventative approaches to control.


Assuntos
Toxinas Botulínicas , Botulismo , Doenças dos Cavalos , Tétano , Animais , Toxinas Botulínicas/uso terapêutico , Botulismo/diagnóstico , Botulismo/prevenção & controle , Botulismo/veterinária , Cavalos , Tétano/diagnóstico , Tétano/prevenção & controle , Tétano/veterinária , Toxina Tetânica
17.
ACS Chem Biol ; 17(9): 2507-2518, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36038138

RESUMO

Toxins TcdA and TcdB from Clostridioides difficile glucosylate human colon Rho GTPases. TcdA and TcdB glucosylation of RhoGTPases results in cytoskeletal changes, causing cell rounding and loss of intestinal integrity. Clostridial toxins TcdA and TcdB are proposed to catalyze glucosylation of Rho GTPases with retention of stereochemistry from UDP-glucose. We used kinetic isotope effects to analyze the mechanisms and transition-state structures of the glucohydrolase and glucosyltransferase activities of TcdB. TcdB catalyzes Rho GTPase glucosylation with retention of stereochemistry, while hydrolysis of UDP-glucose by TcdB causes inversion of stereochemistry. Kinetic analysis revealed TcdB glucosylation via the formation of a ternary complex with no intermediate, supporting an SNi mechanism with nucleophilic attack and leaving group departure occurring on the same face of the glucose ring. Kinetic isotope effects combined with quantum mechanical calculations revealed that the transition states of both glucohydrolase and glucosyltransferase activities of TcdB are highly dissociative. Specifically, the TcdB glucosyltransferase reaction proceeds via an SNi mechanism with the formation of a distinct oxocarbenium phosphate ion pair transition state where the glycosidic bond to the UDP leaving group breaks prior to attack of the threonine nucleophile from Rho GTPase.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Glucose , Glucosiltransferases/metabolismo , Humanos , Cinética , Fosfatos , Toxina Tetânica , Treonina , Uridina Difosfato Glucose , Proteínas rho de Ligação ao GTP
18.
Vaccine ; 40(35): 5103-5113, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35871872

RESUMO

Tetanus toxoid (TTxd), developed over 100 years ago, is a clinically effective, legacy vaccine against tetanus. Due to the extreme potency of native tetanus toxin, manufacturing and regulatory efforts often focus on TTxd production, standardization, and safety, rather than product modernization. Recently, a genetically detoxified, full-length tetanus toxin protein (8MTT) was reported as a tetanus vaccine alternative to TTxd (Przedpelski et al. mBio, 2020). Here we describe the production of 8MTT in Gor/MetTM E. coli, a strain engineered to have an oxidative cytoplasm, allowing for the expression of soluble, disulfide-bonded proteins. The strain was also designed to efficiently cleave N-terminal methionine, the obligatory start amino acid for E. coli expressed proteins. 8MTT was purified as a soluble protein from the cytoplasm in a two-column protocol to > 99 % purity, yielding 0.5 g of purified 8MTT/liter of fermentation broth with low endotoxin contamination, and antigenic purity of 3500 Lf/mg protein nitrogen. Mouse immunizations showed 8MTT to be an immunogenic vaccine and effective as a carrier protein for peptide and polysaccharide conjugates. These studies validate 8MTT as commercially viable and, unlike the heterogenous tetanus toxoid, a uniform carrier protein for conjugate vaccines. The development of a recombinant, genetically detoxified toxin produced in E. coli aligns the tetanus vaccine with modern manufacturing, regulatory, standardization, and safety requirements.


Assuntos
Toxina Tetânica , Tétano , Animais , Anticorpos Antibacterianos , Proteínas de Transporte , Escherichia coli/metabolismo , Camundongos , Tétano/prevenção & controle , Toxina Tetânica/efeitos adversos , Toxina Tetânica/genética , Toxoide Tetânico/efeitos adversos , Toxoide Tetânico/genética , Vacinas Conjugadas
19.
Artigo em Inglês | MEDLINE | ID: mdl-35905569

RESUMO

Formaldehyde detoxification is a process for converting tetanus toxin (TT) and diphtheria toxin (DT) into tetanus toxoid (TTd) and diphtheria toxoid (DTd), respectively. The mechanism of this detoxification process has been investigated by several previous studies based on lab-scale toxoids. To obtain greater insights of the effects induced by formaldehyde, industrial TTd and DTd batches obtained from different detoxification processes were studied in this work. Using liquid chromatography-mass spectrometry (LC-MS), 15 and 20 repeatable formaldehyde-induced modification sites of TTd and DTd were identified, respectively. Toxoid which had a higher formaldehyde-induced modification rate observed by LC-MS, also had larger bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Aggregates which were observed on size exclusion chromatogram (SEC) were confirmed by SDS-PAGE and LC-MS. Formaldehyde detoxification also led to a decrease of isoelectric point (pI) values and an increase of retention on weak anion exchange (WAX) column. Specific toxicity tests were conducted to evaluate toxicity of the TTd and DTd samples obtained with different detoxification conditions. Results from the specific toxicity tests showed that all toxoids used in this study were qualified, including toxoids obtained from mild and drastic detoxification conditions. However, obtained from mild detoxification conditions had less aggregates and may lead to a higher degree of glycosylation in conjugate vaccines than the ones obtained from drastic detoxification conditions. Thus, we suggest that mild detoxification conditions should be used to obtain TTd and DTd. Furthermore, as well as studying the formaldehyde-induced modifications and toxicity in TTd and DTd, the effects of the detoxification process on foreign proteins were also investigated. An increase in foreign proteins were observed in the aggregate than in the monomer of the toxoids. Additionally, some foreign proteins in the monomer of the toxins transferred to the aggregate of toxoids due to the formation of cross-linking. To eliminate the risk of cross-linking foreign proteins to toxoids in vaccination programs, a purification process is necessary before the detoxification process and/or the use of toxoids in vaccines.


Assuntos
Toxoide Diftérico , Toxoide Tetânico , Toxoide Diftérico/química , Formaldeído/química , Formaldeído/toxicidade , Toxina Tetânica/química , Toxoide Tetânico/química , Toxoides
20.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457172

RESUMO

Tetanus and Botulinum type B neurotoxins are bacterial metalloproteases that specifically cleave the vesicle-associated membrane protein VAMP at an identical peptide bond, resulting in inhibition of neuroexocytosis. The minute amounts of these neurotoxins commonly used in experimental animals are not detectable, nor is detection of their VAMP substrate sensitive enough. The immune detection of the cleaved substrate is much more sensitive, as we have previously shown for botulinum neurotoxin type A. Here, we describe the production in rabbit of a polyclonal antibody raised versus a peptide encompassing the 13 residues C-terminal with respect to the neurotoxin cleavage site. The antibody was affinity purified and found to recognize, with high specificity and selectivity, the novel N-terminus of VAMP that becomes exposed after cleavage by tetanus toxin and botulinum toxin type B. This antibody recognizes the neoepitope not only in native and denatured VAMP but also in cultured neurons and in neurons in vivo in neurotoxin-treated mice or rats, suggesting the great potential of this novel tool to elucidate tetanus and botulinum B toxin activity in vivo.


Assuntos
Toxinas Botulínicas Tipo A , Tétano , Animais , Anticorpos/metabolismo , Camundongos , Neurotoxinas/metabolismo , Peptídeos/metabolismo , Proteólise , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Coelhos , Ratos , Toxina Tetânica/química , Toxina Tetânica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...